题目 #
You are given a 0-indexed integer array nums of length n.
A split at an index i where 0 <= i <= n - 2 is called valid if the product of the first i + 1 elements and the product of the remaining elements are coprime.
- For example, if nums = [2, 3, 3], then a split at the index i = 0 is valid because 2 and 9 are coprime, while a split at the index i = 1 is not valid because 6 and 3 are not coprime. A split at the index i = 2 is not valid because i == n - 1.
Return the smallest index i at which the array can be split validly or -1 if there is no such split.
Two values val1 and val2 are coprime if gcd(val1, val2) == 1 where gcd(val1, val2) is the greatest common divisor of val1 and val2.
Example 1:
Input: nums = [4,7,8,15,3,5]
Output: 2
Explanation: The table above shows the values of the product of the first i + 1 elements, the remaining elements, and their gcd at each index i.
The only valid split is at index 2.
Example 2:
Input: nums = [4,7,15,8,3,5]
Output: -1
Explanation: The table above shows the values of the product of the first i + 1 elements, the remaining elements, and their gcd at each index i.
There is no valid split.
Constraints:
- n == nums.length
- $1 <= n <= 10^4$
- $1 <= nums[i] <= 10^6$
思路1 合并区间 #
分析 #
- 找一个点,让前后互质。就是找一个点,前面的质因子和后面的质因子都不相同
- 转化一下,好像可以用区间来抽象这道题。每个质因子是一个区间,有最左边和最右边。
- 分割点就是找到一个点正好没有切到某个区间,就是说某个左端点大于其左侧的最大的右端点
代码 #
- 需要的数据只有左端点对应的最大的右端点,并不需要每个质数的区间,所以代码上来了个区间合并
- 只需要统计某个点为左端点时,右端点最大的值就好。map存每个质数对应的左端点,数组存每个左端点对应的最大的右端点
1func getPrimeFactor(n int, handle func(prime int)) {
2 max := int(math.Sqrt(float64(n))) + 1
3 for i := 2; i < max && i < n; i++ {
4 if n%i == 0 {
5 handle(i)
6 n /= i
7 i = 1
8 }
9 }
10 if n > 1 {
11 handle(n)
12 }
13}
14
15func findValidSplit(nums []int) int {
16 left := make(map[int]int)
17 right := make([]int, len(nums)) // 左端点为i的右端点最大值
18 for i, v := range nums {
19 getPrimeFactor(v, func(prime int) {
20 if l, ok := left[prime]; ok {
21 right[l] = i
22 } else {
23 left[prime] = i
24 }
25 })
26 }
27 maxR := 0
28 for l, r := range right {
29 if l > maxR {
30 return maxR
31 }
32 if r > maxR {
33 maxR = r
34 }
35 }
36 return -1
37}